Queen's College 155 Anniversary Quiz

1. Consider the number **39**.

The smallest prime and the biggest prime factor of 39 are 3 and 13. The prime numbers between 3 and 13 are 3, 5, 7, 11, 13. Also, 39 = 3 + 5 + 7 + 11 + 13. Find the next number that has each property. (Hint: the number is bigger than 100 and it must not be a prime number.)

1 Ans. 155 = 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31

- The number of vertices of a right prism is greater than the number of vertices of a right pyramid by 1. If the pyramid has 155 faces, find the sum of the number of edges of the two solids.
- 2 Ans. Number of faces of the pyramid = 155
 Number of slant faces of the pyramid = 154
 Number of edges of all slant faces = 154
 The base of the pyramid is a polygon of 154 sides and therefore has 154 edges.
 Totol number of edges of the pyramid = 154 + 154 = 308

Total number of vertices of the pyramid = 155 Therefore the total number of vertices of the prism = 156

The base and the top of the prism is a polygon of $\frac{156}{2} = 78$ sides.

Number of edges of the of the prism = $78 \times 3 = 234$ Total number of edges of the two solids = 308 + 234 = 542

- 3. 15! = 15 × 14 × 13 × ... × 1 = 1307674368000
 There are 3 trailing zeros. (Continuous number of zeros in the right side of the number.)
 How many trailing zeros are there in 155!
- **3 Ans.** A trailing zero is formed when a multiple of 5 is multiplied with a multiple of 2. Now all we have to do is count the number of 5's and 2's in the multiplication. Since a zero is created by $10 = 2 \times 5$ and there are more factors of 2 than 5 in 155!, all we have to do is to count the factor 5 in the product.

Let's count the 5's first. 5, 10, 15, 20, 25 and so on, making a total $\left[\frac{155}{5}\right] = 31$, where [x]

denotes the largest integer smaller or equal to x.

However there are numbers 25, 50, 75, ... which makes up two fives in each of them

 $(25 = 5 \times 5)$, these number count up to $\left[\frac{155}{25}\right] = 6$

Similarly, we need to count up numbers which have 3 fives as factors.

Number of trailing zeros = $\left[\frac{155}{5}\right] + \left[\frac{155}{25}\right] + \left[\frac{155}{125}\right] = 31 + 6 + 1 = \underline{38}$

4. Simplify
$$1(1!) + 2(2!) + 3(3!) + \dots + 155(155!)$$

- 4 Ans. $1(1!) + 2(2!) + 3(3!) + \dots + 155(155!)$ = $[2(1!) + 3(2!) + 4(3!) + \dots + 156(155!)]$ $-[1! + 2! + 3! + \dots + 155!]$ = $[2! + 3! + 4! + \dots + 156!] - [1! + 2! + 3! + \dots + 155!]$ = $\underline{156! - 1}$
- **5.** Find the **centre number** of the 155th row the Kordemsky's triangular array. Find also the sum of all numbers in this row.

Kordemsky's infinite triangular array																				
										1										
									2	3	4									
								5	6	7	8	9								
							10	11	12	13	14	15	16							
						17	18	19	20	21	22	23	24	25						
					26	27	28	29	30	31	32	33	34	35	36					
				37	38	39	40	41	42	43	44	45	46	47	48	49				
			50	51	52	53	54	55	56	57	58	59	60	61	62	63	64			
		65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81		
	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	

5 Ans. The last number of the nth row = n^2 The centre number of the nth row = $n^2 - n + 1$ The centre number of the 155th row = $155^2 - 155 + 1 = 23871$ There are (2n - 1) numbers in the rth row. The first number in the nth row = $n^2 - (2n - 1) + 1 = n^2 - 2n + 2$ The first number in the 155th row = $155^2 - 2(155) + 2 = 23717$

Sum of all numbers in the 155th row = $\frac{2n-1}{2}(a+I) = \frac{2(155)-1}{2}(23717+155^2) = \frac{7376139}{2}$

6. If
$$f(x^2 - 313x) = (x - 155)(x - 156)(x - 157)(x - 158)$$
, find $f(x - 155^2)$.

6 Ans.
$$f(x^2 - 313x) = (x - 155)(x - 156)(x - 157)(x - 158)$$

 $= [(x - 155)(x - 158)][(x - 156)(x - 157)]$
 $= [x^2 - 313x + 24490][x^2 - 313x + 24492]$
Hence, $f(x) = (x + 24490)(x + 24492)$
Replace x by $x - 155^2$,
 $f(x - 155^2) = (x - 155^2 + 24490)(x - 155^2 + 24492)$
 $= (x + 465)(x + 467)$

7. The sequence $x_1, x_2, x_3, ..., x_{155}, x_{156}, ...$ satisfies :

$$x_1 = \frac{1}{2}$$
, $x_{k+1} = x_k^2 + x_k$ where $k = 1, 2, ..., 155,$

Find the integral part (that is, excluding the decimal part) of the sum

$$\frac{1}{x_1+1} + \frac{1}{x_2+1} + \dots + \frac{1}{x_{155}+1}$$
. (Hint: $\frac{1}{x_1} - \frac{1}{x_1+1}$.)

7 Ans. We have $\frac{1}{x_1} - \frac{1}{x_1+1} = \frac{1}{x_1(x_1+1)} = \frac{1}{x_2}$ Similarly, $\frac{1}{x_2} - \frac{1}{x_2+1} = \frac{1}{x_3}$ Work up to $\frac{1}{x_{154}} - \frac{1}{x_{155}+1} = \frac{1}{x_{156}}$ Add all these identities up, we have $\frac{1}{x_1+1} + \frac{1}{x_2+1} + \dots + \frac{1}{x_{155}+1} = \frac{1}{x_1} - \frac{1}{x_{156}} = 2 - \frac{1}{x_{156}}$ Since $x_1 = \frac{1}{2}, x_2 = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}, x_3 = \left(\frac{3}{4}\right)^2 + \frac{3}{4} = \frac{21}{16} > 1$, we have $x_1 < x_2 < x_3 < \dots < x_{156}$ (More serious reader may use mathematical induction.) Then $1 = 2 - 1 < 2 - \frac{1}{x_{156}} < 2 - 0 = 2$

The integral part of $\frac{1}{x_1+1} + \frac{1}{x_2+1} + \dots + \frac{1}{x_{155}+1}$ is <u>1</u>.

16/4/2017 Yue Kwok Choy